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Abstract: 

This paper presents a method for extracting transit performance metrics from a General Transit Feed 

Specification’s Real-Time (GTFS-RT) component and aggregating them to roadway segments. A 

framework is then used to analyze this data in terms of consistent, predictable delays (systematic delays) 

and random variation on a segment-by-segment basis (stochastic delays). All methods and datasets used 

are generalizable to transit systems which report vehicle locations in terms of GTFS-RT parameters. This 

provides a network-wide screening tool that can be used to determine locations where reactive treatments 

(e.g., schedule padding) or proactive infrastructural changes (e.g., bus-only lanes, transit signal priority) 

may be effective at improving efficiency and reliability. To demonstrate this framework, a case study is 

performed on one year of GTFS-RT data scraped from the King County Metro bus network in Seattle, 

Washington. Stochastic and systematic delays were calculated and assigned to segments in the network, 

providing insight to spatial trends in reliability and efficiency. Findings for the study network suggest that 

high-pace segments create opportunity for large, stochastic speedups, while the network as a whole may 

carry excessive schedule padding. In addition to the static analysis discussed in this paper, an online 

interactive visualization tool was developed to display ongoing performance measures in the case study 

region. All code is open-source to encourage additional generalizable work on the GTFS-RT standard. 
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1. INTRODUCTION 

The flexibility afforded by sharing existing roadway infrastructure has allowed bus transit systems to 

flourish across a spectrum of transportation settings and cultures. However, one inherent disadvantage to 

sharing existing infrastructure is that buses are susceptible to delays caused by congestion, roadway 

controls, and shared curb use in addition to regular passenger boarding and alighting; all of which can be 

highly unpredictable in nature. If these delays are left unchecked, a bus system may become unreliable, 

and the utility it provides to its riders will diminish rapidly. This might cause ridership to drop, bringing 

down fare recovery, and eventually leading to service cuts compounding these issues. 

 

To avoid this, transit agencies and planners account for delays when scheduling buses, or simply fix their 

root causes. When determining where and how to target such treatments, agencies and planners must 

often make broad strokes to account for cumulative delays across entire routes. One of the primary tools 

used is schedule padding, which adds buffer time to transit segments that are consistent sources of delay. 

Schedule padding can improve travel time reliability by accounting for delays but can also hinder it in 

locations where travel time is highly variable, and it does not fundamentally improve the efficiency of the 

transit system. Furthermore, the iterative process of assigning buffer time to transit segments is informed 

using automatic vehicle location (AVL) systems, for which analytical tools must be built on a system-by-

system basis. 

 

However, the General Transit Feed Specification (GTFS) has provided a fully generalizable framework 

by which agencies can collect and share transit scheduling data. More importantly, it has led to the 

development and initial proliferation of the GTFS-RT (real-time) standard by which actual bus locations 

and stop times can be shared in a standardized format, once collected by various onboard systems (Antrim 

and Barbeau, 2017). To date, analytical tools and support systems are relatively scarce for GTFS-RT. 

This may be because there is little incentive to create them, as agencies collecting this data likely have 

AVL-based performance measurement tools in place. Although powerful, each AVL-based tool must be 

individually maintained by its respective agency, and the lack of standardization prevents clear 

comparison between transit systems. 

 

In this paper, we examine how the GTFS-RT standard may be used to quantify transit performance in a 

way fully generalizable to any bus transit network. We group bus delays into two categories: stochastic 

and systematic, which are quantified through several metrics. These metrics are then calculated at the 

segment-level across all routes and vehicles in the entire transit network. This enables prioritization for 

specific locations where infrastructural treatments (e.g., dedicated bus lanes, transit signal priority) or 
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operational treatments (e.g., schedule padding) will be most effective in improving transit performance. 

Because these measures are quantified from aggregated data across all buses utilizing a given segment, 

treatments can be identified where they stand to create the largest benefits across all vehicles, rather than 

individual routes.  

 

Following this introduction, we discuss prior work conducted in this area. The data collection and 

analysis are presented in the Methods section, where we propose a framework to identify individual 

instances of delay and examine temporal and spatial trends in delay from the GTFS-RT data. In the Case 

Study section, we introduce the data sources used for an exploratory analysis of transit delays in the 

GTFS-RT system for King County Metro (KCM) in Seattle, Washington. This is followed by Results and 

Discussion on what locations exhibit the most delay, how delay varies spatially, and how it relates to 

segment pace. Last, the Conclusion section summarizes the findings, states the limitations of the study, 

and presents suggestions for future research. 

 

2. LITERATURE REVIEW 

2.1 Transit Performance and Delays 

Transit performance is somewhat of an amorphous concept. Many works have aggregated, surveyed, and 

proposed classification hierarchies for a multitude of established metrics (Danaher et al., 2020; Gleason 

and Barnum, 1982). One of its most commonly emphasized components is travel time reliability; 

quantified through specific metrics such as expected waiting time, variance of travel time, or on-time 

performance (Danaher et al., 2020). In other words, metrics of reliability measure how consistent the 

system is. One way reliability is frequently reported is through schedule adherence, which relies on 

measures of individual delays or the amount of time a vehicle has deviated from schedule in a given time 

period (Strathman et al., 1999). As delays accumulate, buses deviate further from their schedule. 

Reliability is one of the most important factors in the utility provided by transit systems; shown to be 

valued higher than comfort (Nurul Habib et al., 2011) or frequency (Bowman and Turnquist, 1981; de 

Oña et al., 2012). Work has explicitly tested the user cost of stop arrival time variability (Bowman and 

Turnquist, 1981) and found it highly impactful. Other work has documented how the utility of reliability 

extends to all modes of transportation, not only transit (Bates et al., 2001). Thus, if bus transit systems are 

to compete with other modes their reliability must be at least comparable to cars, trains, or other modes. 

 

One of the fundamental treatments for unreliability in transit service is “schedule padding”. This is an 

iterative process of schedule design which allocates additional scheduled travel time to roadway segments 

tending towards highly variable travel times (Ceder, 2002). While this does not eliminate the delay, it 
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does improve the reliability of the transit service by allowing extra time for when delays occur, and the 

vehicle falls behind schedule. Unfortunately, when the expected delays do not occur, this can lead to 

buses arriving at stops ahead of time, which also reduces the overall reliability of the system (Furth et al., 

2006). In many cases, drivers are encouraged to slow down when ahead of schedule, either by a central 

dispatcher or onboard clock, thus maintaining equal headways between vehicles (Lin and Bertini, 2004). 

Schedule padding is a relatively simple and inexpensive treatment to apply on a system-wide scale but 

does not address the actual cause of delays. 

 

Another component of transit performance is transit efficiency, or productivity (Gleason and Barnum, 

1982). This component plays a smaller role in utility provided to individuals using the transit system but 

has ramifications for cost of operation and net emissions network-wide. Metrics of transit efficiency are 

expressed as ratios, and might include farebox recovery ratio (operating cost divided by revenue) 

(Danaher et al., 2020), or volume to capacity ratio (bus flow divided by lane capacity) (Godavarthi et al., 

2014). Example treatments to improve efficiency might include addition of transit signal priority, queue-

jump lanes, or route changes, among others (Danaher et al., 2020). Schedule padding on its own is not 

sufficient to improve efficiency, as it simply adjusts bus schedules, without necessarily improving their 

movement. In fact, if excessive schedule padding is used and a bus slows down to remain on-time, there 

may be a reduction in efficiency-related metrics for that trip. 

 

The term stochastic delay has been utilized in a transportation context by a handful of previous works. 

Most recently, it appears in work using GTFS data to determine locations where there is high schedule 

padding in a network (Wessel and Widener, 2017). They used stochastic delay to describe all deviations 

from the GTFS schedule and suggest roadway treatments. In train networks, stochastic propagation of 

delay was used in a method for modeling how an single delaying event can progress through an entire 

system (Berger et al., 2011). In other work, the quantity of schedule deviation due to individual, delay-

causing incidents was estimated through a model using a combination of deterministic and stochastic 

delay elements (Fu and Rilett, 1997). In general, stochastic delays are characterized as occurring due to 

“non-recurring” traffic conditions, which are thus difficult to predict (Sheu et al., 2004). These 

occurrences rely on probabilistic methods to predict accurately (He et al., 2014), and real-time monitoring 

systems to accommodate (Fu and Rilett, 1997; Yu and Yang, 2009). 

 

2.2 Transit Data 

A burgeoning wealth of transit data sources such as automated fare collection (AFC), automated 

passenger count (APC), AVL data, smart cards, phones, and social media websites are documented in 



6 
 

recent literature (Ge et al., 2021; Li et al., 2018; Lu et al., 2021). In particular, AFC, APC, and AVL data 

provide high resolution, targeted insights for measuring transit performance. For example, recent work 

has outlined use cases for AVL data as a measure of on-time performance outcomes during adverse 

weather conditions (Mesbah et al., 2015), and AFC/smart card data as input data for modeling passenger 

waiting time at rail stops (Tavassoli et al., 2018). Other work has found that APC data may be more 

effective as a measure of demand response to reliability (Bills and Carrel, 2021), or a measure of the 

relative impact of delays for routes with varying ridership (Arias et al., 2021). Together, these data 

provide a fairly complete picture of transit performance. However, other emerging data sources such as 

cellular and social media data can provide unique insights, though they require separate collection efforts 

and processing. Several works have distinguished which problems these datasets may support for the 

collecting agency, that are not better served by typical automated data (Diaz et al., 2021; Jevinger and 

Persson, 2019). For example, using social media posts as a measure of communication between transit 

agencies and the public, or using cellular routing information to understand passenger destinations. Last, 

although many automated collection methods have replaced the need for traditional surveys, there may 

still be value in using surveys as a complement to these “big data” sources (Ge et al., 2021). In particular, 

census data is essential for observing socio-demographic trends. In the remainder of this section, we 

discuss solutions to performance measurement built on AVL data, which is most similar to GTFS-RT 

data in regards to its structure. We then review and discuss literature on the benefits of generalization for 

AVL data through the GTFS-RT standard. 

 

2.3 Automated Data Collection in Bus Performance Management 

To determine performance metrics, and ultimately inform system treatments, data must be collected at 

stops or corridors of interest. This can be expensive, time consuming and provides only a narrow window 

of perspective into the nature of delays. AVL technology offers an automated means to record and archive 

individual bus movements and can thus help illuminate of the locations of delays for each vehicle in the 

system. They may also communicate with a central dispatch to provide real-time updates to a controlling 

agency for oversight and performance monitoring purposes. 

 

In prior work, AVL data has been used to quantify bus reliability and efficiency at the individual bus level 

(Bertini and El-Geneidy, 2003; Cham, 2006). Aggregation then allows for metrics to be calculated at the 

stop, corridor, route, or system levels (Bertini and El-Geneidy, 2003; Duddu et al., 2019). Stop-to-stop 

and route level analysis in particular has been supported by AVL data, with performance measures 

calculated from schedule adherence being used to determine reliability throughout such corridors in the 

system (El‐Geneidy et al., 2011). Additionally, AVL data has been used to analyze secondary interactions 
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which are not directly reported by the system such as bus bunching (Feng and Figliozzi, 2012a), travel 

time for specific roadway segments (Berkow et al., 2007), and even in aggregate as probes to measure the 

performance of all roadway users, not just buses (Bertini and Tantiyanugulchai, 2004). Among these and 

other works, some classifications for delays based on their cause, or location reported in AVL data have 

been proposed. For example, classifying the cause of delays based on their coordinates and surrounding 

infrastructure (Coghlan et al., 2019) or whether they occurred due to a scheduled stop (Pi et al., 2018). 

 

Recent work has also emphasized the use of archived AVL data to establish reliability and classify causes 

of unreliability for transit segments or routes in a network. For example, one study developed a “time 

budget” for each trip in a network broken up by dwell time, free-flow time, etc. (Lind and Reid, 2021). 

Speed was calculated from GPS traces and tracked locations were classified depending on additional 

characteristics such as whether it was less than a certain threshold, or close to a stop. Aggregation across 

routes determined which locations in the network cost certain portions of the overall time budget. A 

general set of performance metrics specifically relating to bus service reliability, which can be informed 

by AVL data, is also documented (Albadvi et al., 2018). Another work examined waiting times along a 

chosen BRT line and constructed a model to estimate waiting time based on average vehicle delay 

informed by AVL data (Webb et al., 2020). AVL data has also been used in combination with AFC data 

as a measure of reliability for intermodal trips crossing metro, tram, and bus transit (Dixit et al., 2019). 

Similarly AVL, GTFS, and AFC-based methods of calculating travel time reliability were compared in 

another study which considered walking and transit modes (Li et al., 2021). 

 

Although powerful in analyzing performance, AVL and APC data is not often made publicly available, 

lacks a standardized format, and leads to individual “home-grown” analysis tools that are not reusable by 

other agencies or researchers (Furth et al., 2006). Previous academic works have developed tools that 

suggest automatically generated performance metrics (Mandelzys and Hellinga, 2010), or visualize transit 

performance through an analysis interface (Currie and Mesbah, 2011; Feng and Figliozzi, 2012b). While 

effective and useful, these precipitate a burden on individual agencies to maintain supporting software 

and databases for each technology and its respective analysis tools. It also creates opportunities for 

discrepancies in the calculation methods for metrics between systems. 

 

2.4 GTFS and GTFS-RT Standards 

Public-facing GTFS-RT feeds provide a standardized format for repackaging AVL data, from which 

schedule padding and other system characteristics can be reliably ascertained (Ge et al., 2021; Wessel and 

Widener, 2017). Many agencies currently provide this data through application programming interfaces 
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(APIs), from which users may request and receive unified results. Given that the GTFS standard has been 

adopted by more than 1,000 transit agencies globally, the GTFS-RT standard may be poised to follow. 

Using this specification, generalizable tools for analysis and visualization of transit data can be applied to 

draw comparisons between networks with ease. 

 

The proliferation of the GTFS format has supported generalizable analysis and comparison of scheduled 

coverage and service quality between networks. For example, one team measured gaps in transit supply 

and demand using GTFS schedules and Canadian census data (Kaeoruean et al., 2020), and another 

estimated the travel time savings potential for transit priority treatments (Arias et al., 2021). However, as 

pointed out in several studies, actual service may deviate significantly from scheduled service. This is 

where AVL, GTFS-RT (which is essentially repackaged AVL), smart card, and other observed data 

sources must be used to determine actual transit performance, and several studies have been performed 

which compare or combine the observed results of these data against GTFS schedules (Kumar et al., 

2018; Li et al., 2021). One study explored the relationship between scheduled and actual data through a 

comparison of travel times along shortest paths between origin-destination pairs in a network, finding that 

the actual times were right-skewed and overall higher than those in the schedule (Li et al., 2021). Another 

observed service coverage informed by GTFS feeds in relation to the relative demand of different 

destinations in Calgary, Canada across both spatial and temporal boundaries (Kaeoruean et al., 2020). 

However, due to its closed-source nature, AVL data do not have the same benefits of generalizability that 

GTFS-RT data do. This is where GTFS-RT creates opportunity for unified analysis of actual bus 

performance in the same way that GTFS unifies scheduled analysis of bus performance. 

 

There is currently much less literature on calculating performance metrics from GTFS-RT data than 

AVL/APC data. This is likely due to the greater establishment of AVL/APC data, and its offering of 

additional variables and finer temporal detail. In prior work on GTFS-RT, projects have developed simple 

real-time observation tools to display immediate bus locations to an end-user such as in one academic 

work (Yue et al., 2017). Some studies have gone a step further and applied real-time prediction methods 

to determine delays in active systems and used that information to provide better scheduling information 

to travelers: This was found to lead to lower overall wait times for travelers, and a more positive 

perception of transit reliability (Watkins et al., 2011). Sophisticated methods for archiving GTFS-RT data 

have also been developed, which is the first step for unified analysis (Barbeau et al., 2020). Preliminary 

work has developed and tested a framework for analyzing bus corridors using archived GTFS-RT data 

(Caros et al., 2021). Their work first developed a method for combining routes into consistent stop-to-

stop corridors, then calculated aggregate performance metrics for each corridor. 
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2.5 Challenges for GTFS-RT Development 

Overall, GTFS-RT is in a nascent state of adoption, with few open-source analysis tools available for 

performance analysis. One of the largest challenges currently facing GTFS-RT data is quality control 

(Steiner et al., 2015). Many GTFS-RT feeds are not aligned with the standard, and thus fully 

generalizable tools for differing feeds require additional consideration. As more agencies make bus 

position data available through GTFS-RT, and additional tools are constructed on the standard, there will 

be more incentive to fix the integrity of these feeds to benefit from open-source work. There is currently 

ongoing work to develop tools specifically for validating GTFS-RT feeds (Barbeau, 2018). 

 

This paper contributes to the state of the art through a case study of bus transit data collected from a web 

API-based GTFS-RT system and disaggregate analysis of segment-level reliability and efficiency metrics 

informed by that data. We build on prior work classifying stochastic delays with the additional distinction 

of systematic delays, accruing from consistent, predictable reductions in transit free-flow speed due to 

congestion, signals, and transit stops. This allows for analysis of the transit network on a segment-by-

segment basis, and classification of performance losses between inefficiency and unreliability. Combined, 

these can be useful for informing transit priority treatments or schedule adjustments in any network. 

 

3. METHODS 

This section details the process by which GTFS-RT data was collected into a PostGIS database and 

analyzed using a combination of built-in functions and QGIS software for visualization, following the 

general steps outlined in Fig. 1. 

 

 

Fig. 1 Overview of the steps used to measure and classify transit performance 

 

3.1 Collect Data 
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The data source for this study was a programming API providing access to underlying GTFS-RT data for 

the study region (see Case Study section for additional details). As a developing standard, there is 

ongoing debate as to which parameters should be required in GTFS-RT, and which should be optional 

(Barbeau, 2018). The list below documents each parameter used in this analysis framework using the 

nomenclature of the API from which they were collected. At a minimum, these are the required 

parameters to recreate this analysis: 

 

activeTripId: 

Unique identifier for each vehicle, traversing a single route, on a single day (i.e., a single 

scheduled run of a route). 

 

vehicleId: 

Unique identifier for each vehicle, consistent across days and routes. It is physically 

painted on each vehicle. 

 

scheduleDeviation: 

Difference in seconds between a trip’s known position, and where it is scheduled to be as 

calculated by the AVL system. Can be positive (behind schedule) or negative (ahead of 

schedule). 

 

lastKnownDistanceAlongTrip: 

The distance that the current trip has traveled since its inception. Resets to zero for the 

next trip. 

 

lastKnownLocation: 

The last updated position for a given trip. 

 

lastLocationUpdateTime: 

The timestamp corresponding to when a trip’s last known location was recorded. 

 

Queries were made at the highest resolution feasible; different buses may update the API at different 

frequencies, and the system itself may update at its own frequency. The higher the frequency that the data 

is collected, the more precisely delays can be quantified and located. This comes at heavier computational 

costs during the analysis and generates more calls to the API. Additionally, it becomes more 
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computationally challenging to assign segment delays to their respective road segments as the size of the 

location and roadway segment datasets increase. Although the archiving framework used here has suited 

the needs of this project, there is room for improvement in efficiency and modularization, as detailed by 

recent work in the field of GTFS-RT “big-data” management (Barbeau et al., 2020). 

 

3.2 Quantify and Locate Delays 

In this paper, we present several metrics calculated from onboard vehicle data feeds provided in the 

GTFS-RT format, which fall separately under reliability and efficiency metrics. These are based on time-

series data and are calculated between each vehicle update interval. Thus, the unit of analysis used is an 

individual instance of “delay” or step in time in which a bus performs better or worse relative to either its 

schedule, or its free flow speed. Metrics were chosen to capture both reliability and efficiency 

components of the system and are classified for treatment analysis as either stochastic or systematic 

delays. We assume that the current route schedules are appropriate for the expected quantity of delay on 

each given segment, and thus any schedule deviation is the result of unpredictable variation, i.e., 

stochastic delay. 

 

Metrics for quantifying delay between consecutive bus locations i-1 and i were calculated according to 

Equations 1-4: 

 

Vehicle pace at time i is calculated using the lastKnownDistanceAlongTrip (TD) and 

lastLocationUpdateTime (LT) parameters as indicated in Equation 1. Total delay (combined systematic 

and stochastic delay) between location i and i-1 is then calculated as a product of the difference between 

the measured pace and the 95th percentile pace for the segment, and the distance traveled between those 

two locations (Equation 2). 

 

𝐿𝑇𝑖−𝐿𝑇𝑖−1

𝑇𝐷𝑖−𝑇𝐷𝑖−1
= 𝑃𝑎𝑐𝑒 𝑖 (𝑠𝑒𝑐/𝑚𝑖) (1) 

 

(𝑃𝑎𝑐𝑒95 − 𝑃𝑎𝑐𝑒𝑖) ∗ (𝑇𝐷𝑖 − 𝑇𝐷𝑖−1) = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑙𝑎𝑦𝑖 (𝑠𝑒𝑐) (2) 

 

Stochastic delay (Equation 3) is estimated in terms of the scheduleDeviation (SD) GTFS-RT parameter. 

In cases where delays occur due to planned or predictable changes to vehicle scheduling, such as road 

work or system maintenance, scheduled travel times will account for these delays (so long as these delays 

are accounted for at the scheduling stage). Therefore, changes in schedule deviation indicate an instance 

of unexpected delay such as a collision, blocked stop pull-in, delayed re-entry, or an unusually high 
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number of boardings. Schedule deviation is available for all buses broadcasting real-time arrival 

information and is continuously calculated as a cumulative measure of the delays and speedups 

experienced by a vehicle during a given trip. Any decrease in schedule deviation is treated as a negative 

delay, i.e., the bus sped up due to lack of congestion or other factors. Any increase in schedule deviation 

is treated as a positive delay, i.e., the bus slowed down due to delaying factors (Fig. 2). 

 

𝑆𝐷𝑖 − 𝑆𝐷𝑖−1 = 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐷𝑒𝑙𝑎𝑦𝑖 (𝑠𝑒𝑐) (3) 

 

 

Fig. 2 The process of determining individual instances of delay from the cumulative schedule deviation 

parameter 

 

Systematic delay (Equation 4) is calculated from previously estimated stochastic and total delays. 

Systematic delay measures the predictable delays that accrue due to congestion and other interference. 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐷𝑒𝑙𝑎𝑦𝑖 = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑙𝑎𝑦𝑖 −  𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐷𝑒𝑙𝑎𝑦𝑖 (𝑠𝑒𝑐) (4) 

 

In summary, systematic delays account for scheduled delays accommodated in the timetable. Stochastic 

delays account for unscheduled delays which have caused a vehicle to deviate from its schedule. This 
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distinction is achieved through the use of two different approaches to calculating bus delay from the 

GTFS-RT parameters available. 

 

3.3 Assign Segments 

After the data is processed to determine all instances of delay during the study period, and each delay has 

been assigned a location based on the bus location of its second timestamp, each delay location is then 

assigned to its closest roadway segment. Contemporary practice is to use a map-matching algorithm to 

assign locations to the nearest geographical feature (Quddus et al., 2007). In our study, delay locations are 

matched to street segments based on their lastKnownLocation and spatially indexed coordinates of each 

roadway segment using nearest neighbors. The atomic units of aggregation used for calculating 

performance metrics from each observed bus coordinate in this method are street segments of 

approximately one block length. 

 

4. CASE STUDY 

4.1 Case Study Network 

To demonstrate the collection and analysis process of reliability and efficiency performance metrics for 

GTFS-RT data, a case study was performed. Data was collected from the KCM bus network in Seattle, 

Washington, over 12 months from August 2020 – August 2021 (Fig. 3). This section details the data 

sources used for this purpose. 
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Fig. 3 Map of case study region with major highways and central business districts labeled 

 

4.2 Data Sources 

Several data sources were utilized to record and analyze system-wide bus delays in the KCM network. 

Bus delays, locations, and other GTFS-RT elements were drawn from the OneBusAway API, which 

provides access to data for all major transit agencies in the Puget Sound region, and is managed by Sound 

Transit (Ferris et al., 2010). The API provides various function calls to access this data, although some 

underlying variables such as AVL system location accuracy and refresh rate are not documented and can 

be dependent on the agency or vehicle in question. 

 

Analysis is performed at the segment-level across the KCM network, necessitating separate shapefiles for 

street segments and active bus routes. The street segments are drawn from the American Community 

Survey (ACS) TIGER shapefiles (US Census Bureau, 2021). This dataset includes all street segments 

regardless of whether they are utilized by the transit network and is available for all roadways in the 

United States. To improve computational efficiency in assigning GPS coordinates for active routes to the 

closest street segment, these segments are filtered to only include those traversed by buses in the KCM 
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network. This is accomplished using a second shapefile; the bus route shapefile provided by the KCM 

GTFS data. These routes are buffered, and street segments contained within them are kept in the analysis. 

This reduces the overall number of potential segments to search when assigning bus coordinates to the 

nearest roadway and ensures that bus coordinates are only assigned to segments traversed by their 

respective route. Segments were first determined based on intersecting roadways, then long segments 

were broken up if longer than a specified length. 

 

Data was collected on both weekdays and weekends. API queries were made starting at 6AM and ending 

at 7PM. To gather data for all active transit routes, the OneBusAway API was queried once every ten 

seconds using a single API call to the “vehicles-for-agency” API endpoint, which provides a list of 

vehicle IDs, and information about the trip status for each vehicle in the response. To obtain information 

on only the active vehicles, trip statuses listed as canceled, or trips with a null identifier were removed. 

Additionally, any active trips without posted GPS coordinates were removed, on the assumption that 

these vehicles were not equipped with real-time tracking technology. These responses were then 

timestamped and inserted into a relational database. 

 

5. RESULTS AND DISCUSSION 

5.1 Summary 

After cleaning, the final dataset consisted of approximately 27,000,000 tracked bus locations belonging to 

6,000 unique transit trips. Median stochastic delay was -19 seconds, median systematic delay was 95 

seconds, and median total delay was 72 seconds. Figs. 4-6 show the distribution of a sample of each type 

of delay across the dataset. 
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Fig. 4 Distribution of stochastic delays in the bus locations dataset 

 

 

Fig. 5 Distribution of systematic delays in the bus locations dataset 

 

 

Fig. 6 Distribution of total delays in the bus locations dataset 

 

Stochastic delay is approximately normal and centered around approximately -19 seconds. However, as 

shown in Fig. 4, instances of schedule deviation reported by the system appear to be rounded down to 0 

when less than 15 seconds in magnitude, leading to a discontinuity in the center of the distribution at +/- 

15 seconds. Because the distribution is non-zero centered, there could be systematic delays that are 

unaccounted for, and potential reliability improvements gained by adjusting bus schedules. In this case, 

the distribution of stochastic delays is skewed negative; therefore, buses are traveling ahead of schedule 

more often than behind or on-time. One cause of this may be over-padded bus schedules, as buses are 
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consistently traveling faster than intended. The net effect may be a less reliable system, as passengers 

arrive at bus stops only to find that their bus has already passed them by. Treatments might include 

training for drivers to wait at hold positions when ahead of schedule on segments with high stochastic 

delay, or overall schedule adjustment to decrease allocated travel time. Stochastic delays greater than 120 

seconds in magnitude were quite rare, with the combined set of all stochastic delays having a standard 

deviation of 34 seconds. The standard deviation of stochastic delay may be used to compare the relative 

unpredictability of segments within and across networks. 

 

Total delay is skewed right and positive. This is because free-flow pace has been defined in this study as 

the 95th percentile, and total delay was calculated using the difference between actual and free-flow pace. 

Systematic delay is also skewed right, making it mostly positive. Due to its derivation from total and 

stochastic delays, there is a small discontinuity near -15 seconds. This may again be the result of schedule 

deviation being rounded down to zero by the system when smaller than 15 seconds in magnitude. 

 

5.2 Segment Results 

The analysis lends itself well to identifying hot spots in the network which carry high-magnitude delays. 

Figs. 7-12 show the quantitative and spatial distributions of each classification of mean delay experienced 

by buses traversing a given segment in the network. 

 

 

Fig. 7 Distribution of mean stochastic delay for all segments in the study network 
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Fig. 8 Spatial distribution of stochastic delays in the study network 

 

One of the surprising findings of this case study was the presence of very high stochastic speedups on 

some highway segments relative to local streets. This is shown most clearly on the north-south traversing 

I-5 segments north of Seattle which each carry average speedups of about 1-2 minutes. This may be 

because bus schedules accounting for time between stops group these segments with local streets. So, 

when a bus leaves the highway, and continues on local streets to its next stop, it accumulates delays which 

balance out the highway speedups. Alternatively, this may be explained by large amounts of schedule 

padding for highway segments (which can have highly variable speeds depending on congestion 

conditions) with the understanding that drivers may wait at control points if not delayed. 

 



19 
 

 

Fig. 9 Distribution of mean systematic delay for all segments in the network 

 

 

Fig. 10 Spatial distribution of systematic delays 
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In comparison to the stochastic delay results, some aspects of systematic delays were similar. Again, 

certain highway segments such as the east-west I-90 and SR-520 segments carried relatively low average 

delay. However, the distribution of mean segment delay reveals a shift from speedups to slowdowns, with 

most segments carrying a positive average delay. With the exception of a handful of segments, the 

magnitude of stochastic delay is relatively small compared so systematic delay. Thus, the trends of total 

delay (Figs. 11, 12) tend to mirror those of systematic delay. 

 

 

Fig. 11 Distribution of mean total delay for all segments in the network 
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Fig. 12 Spatial distribution of total delay 

 

In addition to mean delay, the mean pace is calculated for each segment in the network across all 

observations in the dataset. The spatial distribution is shown in Fig. 13. This provides perhaps the clearest 

picture of efficiency in the network derived from GTFS-RT, despite its lack of passenger data. The largest 

cluster of slower segments is found in the central business district (CBD), with additional zones to the 

east (CBD of neighboring city Bellevue) and north (University of Washington). As would be expected, 

highway segments are consistently higher pace than the rest of the network. Of course, this does not 

necessarily make them more efficient than the rest of the network, as they have fewer stops and higher 

speed limits. 
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Fig. 13 Spatial distribution of pace 

 

These results present a static analysis of 12 months of transit location data; however, the primary strength 

of GTFS-RT is that it is real time and can provide continuous performance insights as buses traverse the 

network. Thus, an interactive transit network performance visualization tool “TransitVis” was developed 

for the data used in this paper and is available online, along with open-source Python code for creating the 

necessary databases and performing the analysis (Aemmer, 2022). This tool uses the same analysis 

framework as discussed in this paper but provides additional performance measures and a higher temporal 

resolution (Fig. 14). 
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Fig. 14 User interface for interactive visualization tool 

 

6. CONCLUSIONS 

In this paper, we developed a framework for utilizing GTFS-RT data for locating and characterizing 

service performance metrics. We outlined a framework for collecting and analyzing transit delay data on a 

system-wide scale, using a case study of the KCM network in Seattle, Washington.  

 

We developed two metrics that GTFS-RT data was capable of informing. The first, stochastic delay, was 

based on the schedule deviation parameter, which is an indication of delays that are not accounted for by 

schedule padding or intentional driver checkpoint slowdowns. In the case study, stochastic delay was 

distributed equally throughout the network, with the exception of highway segments which experienced 

unscheduled speedups. The second metric, systematic delay, was based on odometer (distance) and 

timestamp (time) sensors reported in the system. This allowed for the calculation of average speed and 

pace at each tracked location. 95th percentile pace was taken as the free-flow, non-delayed pace, and delay 

was calculated based on the GTFS-RT measurements. In theory, this should account for all systematic 

and stochastic delay that occurred between tracked locations. This assumes that the current schedule 

properly accounts for all systematic delay. However, we observed that the distribution of stochastic delays 

in the system was centered slightly towards speedups, indicating that perhaps on a system-wide level the 

current schedule is slightly over padded. 
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This framework allowed for segment-based analysis of transit hotspots and differentiated between types 

of delay which may require different types of treatment. For example, less reliable areas with negative 

stochastic delay may be treated by removing schedule padding. Whereas segments with high systematic 

delay may be inefficient and could be improved with transit signal priority or bus lanes. Any corridor 

identified by either of the two metrics may also become candidate for follow-on observation to identify 

the exact causes of delay. In fact, because GTFS-RT has less detail than combined AVL/APC data, the 

main use-case for this class of analysis may be as a preliminary screening tool for locations in the network 

with performance anomalies, which can then be used to target additional monitoring resources more 

efficiently. 

 

This approach also does not measure other important components of transit performance, such as 

accessibility, which may rely on factors of the built environment to quantify, for which there is currently 

no standardized data source (Kim and Song, 2018). Additionally, many measures of efficiency rely on 

data gathered from APC systems, which record the number of passengers boarding and alighting at each 

transit stop. Bus occupancy is currently an experimental feature of GTFS-RT. This data is not currently 

available in the feeds used for this case study but would greatly improve the number of performance 

metrics that can be informed by GTFS-RT. 

 

Last, this work focused on a segment-based analysis of transit performance. However, the GTFS-RT 

standard includes additional information on the current stop of each active vehicle. This could be used to 

further separate analysis based on delay accrued at segments, and delay accrued at individual stops. This 

would provide a more nuanced analysis of why certain segments or corridors decrease performance 

relative to others and open the way for predictive delay models based on GTFS-RT data. Future work 

might build on the methods presented here through the inclusion of field observation, video, or AVL data 

as ground truth validation for information provided in a GTFS-RT feed. Field observations in particular 

might complement this work by providing labeled delay data, which could enable classification models 

for the cause of transit delays, and census survey data could explain who is affected by delays and how. 

Upscaling methods for GTFS-RT trained on AVL data might also bring more detailed performance 

insights. Overall, synthesizing these different data sources would allow for the development of more 

sophisticated metrics related to bus movement such as acceleration, average queuing distance for 

individual intersections, or average stop dwell time. Deriving these secondary features from those already 

available in GTFS-RT could then inform targeted treatments for specific causes of delay. 
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